tg-me.com/machinelearning_interview/1821
Last Update:
Исследователи Яндекса разработали и выложили в опенсорс один из крупнейших датасетов для развития рекомендательных систем — YaMBDa
Датасет включает 4,79 миллиардов обезличенных пользовательских действий в Яндекс Музыке. Он включает в себя только числовые идентификаторы, что позволяет сохранить конфиденциальность.
Открытые датасеты такого масштаба от коммерческих компаний — редкость. При этом даже те, что есть (LFM-1B, LFM-2B) со временем стали недоступны из-за лицензионных ограничений, а популярные датасеты от Steam или Netflix Prize фокусировались лишь на обратной связи и содержали несколько десятков млн взаимодействий.
Поэтому, во-первых, у большинства исследователей попросту не было доступа к web‑scale‑сервисам, следовательно — и возможности протестировать алгоритмы в условиях, приближенных к реальности. А во-вторых, многие датасеты не позволяли разделить выборку на train и test по хронологии: это критично, когда речь идет об алгоритмах, которые должны предсказывать будущее, а не анализировать прошлое.
YaMBDa (YAndex Music Billion-interactions DAtaset) решает обе проблемы. Его можно использовать не только для оценки качества стримминговых систем, но и для e-commerce, соцсетей и других задач рекомендаций. Датасет доступен в трех вариантах: полная версия содержит почти 5 млрд данных, а уменьшенные — 500 млн и 50 млн. Можно выбрать версию, которая соответствует задачам и вычислительным ресурсам. Используя этот датасет, разработчики, исследователи и молодые ученые смогут тестировать и улучшать алгоритмы в продуктах, где используются рекомендательные системы.
BY Machine learning Interview

Share with your friend now:
tg-me.com/machinelearning_interview/1821